Rotation, Initial Stress, Gravity and Electromagnetic Field Effect on P Wave Reflection from Stress-Free Surface Elastic Half-Space with Voids under Three Thermoelastic Models

S. M. ABO-DAHAB
Math. Dept., Faculty of Science
Taif University 888, Saudi Arabia
sdahb@yahoo.com

S. Z. RIDA
R. A. MOHAMED
A. A. KILANY
Math. Dept., Faculty of Science
South Valley University, Qena 83523, Egypt

Received (3 October 2017)
Revised (15 October 2017)
Accepted (26 November 2017)

The present paper is devoted to investigate the influence of the rotation, thermal field, initial stress, gravity field, electromagnetic and voids on the reflection of P wave under three models of generalized thermoelasticity: Classical and Dynamical coupled model (CD), Lord-Shulman model (LS), Green-Lindsay model (GL). The boundary conditions at stress-free thermally insulated surface are satisfied to obtain Algebraic system of four equations in the reflection coefficients of various reflected waves. It is shown that there exist four plane waves; P_1, P_2, P_3 and P_4. In addition, the reflection coefficients from insulated and isothermal stress-free surface for the incident P wave are obtained. Finally, numerical values of the complex modulus of the reflection coefficients are visualized graphically to display the effects of the rotation, initial stress, gravity field magnetic field, thermal relaxation times and voids parameters.

Keywords: electromagnetic, rotation, initial stress, gravity field, thermoelasticity, reflection, voids, relaxation times.

1. Introduction

In recent years, more attentions have been given for the rotation effect on waves with thermal field, initial stress magnetic field, electric field and voids under relaxation times because of its utilitarian aspects on Seismic waves, Earthquakes, Volcanoes and Acoustics. In the classical theory of thermoelasticity, when an elastic solid is subjected to a thermal disturbance, the effect is felt in a location far from the
In this paper, we study the \(P \) - wave on an isotropic homogeneous solid half-space under the influence of initial stress, magnetic field, electric field, thermal relaxation times, gravity field and rotation with voids.

2. Basic equations

The governing equations for an isotropic, homogeneous elastic solid with generalized thermoelasticity with voids and Lorentz’s body forces in the absence of incremental heat flux at reference temperature \(T_0 \) are given as follows:

\[
P_1, P_2, P_3
\]

\[
\rho \eta = \beta e_{kk} + \alpha \Theta + m \Phi
\]

\[
g^* = -b e_{kk} - \xi \Phi + m \Theta
\]

\[
e_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i})
\]

\[
\omega_{ij} = \frac{1}{2} (u_{j,i} - u_{i,j})
\]

\[
S_i = \alpha \Phi, i
\]

The Maxwell’s equation:

\[
\tau_{ij} = \mu e [H_i h_j + H_j h_i - (H_k . h_k) \delta_{ij}]
\]

The equation of motion is:

\[
\sigma_{ji,j} + F_i = \rho \left[\ddot{u} + \left(\Omega \times \Omega \times \dot{u} \right) + \left(2 \Omega \times \dot{\Omega} \right) \right]
\]

which tends to:

\[
\left(\mu - \frac{\mu}{2} \right) u_{i,j,j} + \left(\lambda + \mu - \frac{\mu}{2} \right) u_{j,i,j} - \beta \Theta, i + b \Phi, i + F_i + G_i
\]

\[
= \rho \left[\ddot{u} + \left(\Omega \times \Omega \times \dot{u} \right) + \left(2 \Omega \times \dot{\Omega} \right) \right]
\]

where:

\[
F_i = \left(\vec{J} \times \vec{B} \right)_i, \quad G = \rho g \left(-\frac{\partial w}{\partial x}, 0, \frac{\partial u}{\partial x} \right)
\]

where, \(\vec{\Omega} \times \vec{\Omega} \times \vec{u} \) is the centripetal acceleration due to the time varying motion only and \(2 \vec{\Omega} \times \vec{u} \) is the Coriolis acceleration.

For slowly moving medium, the variation of magnetic field and electric field are given by Maxwell’s equation as the following form:

\[
\text{curl } \vec{h} = \vec{J} + \varepsilon_0 \dot{\vec{E}} \quad \text{curl } \vec{E} = -\mu_e \vec{h} \quad \text{div } \vec{h} = 0
\]

\[
\text{div } \vec{E} = 0 \quad \vec{E} = -\mu_e \left(\vec{u} \times \vec{H} \right) \quad \vec{h} = \text{curl } \left(\vec{u} \times \vec{H}_0 \right)
\]
where:

\[\vec{H} = -\vec{H}_0 + h(x, z, t), \quad \vec{H}_0 = (0, H, 0) \quad (12) \]

The equation of heat conduction:

\[K\partial^2 \Theta/\partial x^2 + K\partial^2 \Theta/\partial z^2 = \left(1 + \tau_2 \partial/\partial t\right) \left[\rho C_e \Theta + mT_0 \Phi\right] + \gamma T_0 \left(1 + \delta \tau_2 \partial/\partial t\right) \dot{\Phi} \quad (13) \]

\[\alpha \Phi_{kk} - \xi \Phi - bu_{kk} + m\Theta = \rho \chi \ddot{\Phi} \quad (14) \]

For two-dimensional motion in \(xz\)-plane, equations (9), (13) and (14) written as:

\[\left(\lambda + 2\mu + \mu_e H^2\right) u_{11} + \left(\lambda + \mu + \mu_e H^2 + P/2\right) u_{33} + \left(\mu - P/2\right) u_{13} - gu_{31} \]

\[-\gamma \left(1 + \tau_1 \partial/\partial t\right) \Theta_{11} + \frac{b}{\rho} \Phi_{11} = \left(1 + \frac{\mu^2 \varepsilon_0 H^2}{\rho}\right) \dot{u}_1 + 2\Omega \dot{u}_3 - \Omega^2 u_1 \quad (15) \]

\[\left(\lambda + 2\mu + \mu_e H^2\right) u_{33} + \left(\lambda + \mu + \mu_e H^2 + P/2\right) u_{11} + \left(\mu - P/2\right) u_{31} + gu_{13} \]

\[-\gamma \left(1 + \tau_1 \partial/\partial t\right) \Theta_{33} + \frac{b}{\rho} \Phi_{33} = \left(1 + \frac{\mu^2 \varepsilon_0 H^2}{\rho}\right) \dot{u}_3 - 2\Omega \dot{u}_1 - \Omega^2 u_3 \quad (16) \]

\[K \left(\partial^2 \Theta/\partial x^2 + \partial^2 \Theta/\partial z^2\right) = \left(1 + \tau_2 \partial/\partial t\right) \left[\rho C_e \Theta + mT_0 \Phi\right] \]

\[+ \gamma T_0 \left(1 + \delta \tau_2 \partial/\partial t\right) \left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z}\right) \quad (17) \]

\[\alpha \left(\partial^2 \Phi/\partial x^2 + \partial^2 \Phi/\partial z^2\right) - \xi \Phi - b \left(\frac{\partial u}{\partial x} + \frac{\partial w}{\partial z}\right) + m\Theta = \rho \chi \ddot{\Phi} \quad (18) \]

We study the above basic equations for the following three different theories:

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>(\tau_2)</th>
<th>(\tau_1)</th>
<th>Theories</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(i) Classical and Dynamical coupled theory (1956) (CD)</td>
</tr>
<tr>
<td>1</td>
<td>>0</td>
<td>0</td>
<td>(ii) Lord and Shulman’s theory (1967) (LS)</td>
</tr>
<tr>
<td>0</td>
<td>>0</td>
<td>>0</td>
<td>(iii) Green and Lindsay’s theory (1972) (GL)</td>
</tr>
</tbody>
</table>

The displacement components \(u_1\) and \(u_3\) may be written in terms of the scaler and the vector potential functions, \(\varphi\) and \(\psi\), respectively, as:

\[u_i = \varphi, i + e_{ijk} \psi, j \quad (19) \]
which take the form:

\[u = \frac{\partial \phi}{\partial x} - \frac{\partial \psi}{\partial z}, \quad w = \frac{\partial \phi}{\partial z} + \frac{\partial \psi}{\partial x} \]

(20)

Substituting from Eq. (20) into Eqs. (15)-(18), we get:

\[C_S^2 \nabla^2 \psi + g \frac{\partial \phi}{\partial x} = \left(R_H^2 \psi - \Omega^2 \right) \psi - 2\Omega \psi \]

(21)

\[(C_T^2 + R_H^2) \nabla^2 \phi - \bar{\beta} \tau^*_1 \Theta + \bar{b} \Phi - g \frac{\partial \psi}{\partial x} = \left(R_H^2 \psi - \Omega^2 \right) \phi + 2\Omega \psi \]

(22)

\[\omega^* \nabla^2 \Theta = \tau^*_2 \left(\Theta + \epsilon_1 \Phi \right) + \tau^*_2 \epsilon \nabla^2 \psi \]

(23)

\[\alpha \nabla^2 \Phi - \xi \Phi - m \Theta - b \nabla^2 \phi = \rho \chi \phi \]

(24)

Eqs. (21)-(24) are coupled in \(\phi, \Theta, \Phi \) and \(\psi \) we see that the SV and P waves affect by the thermal field, voids, rotation and the electromagnetic.

For the analytical solution of Eqs. (21)-(24) in the form of the harmonic travelling wave, we suppose that the solution takes the form:

\[[\varphi, \Theta, \Phi, \psi](x, z, t) = [\varphi_0, \Theta_0, \Phi_0, \psi_0] e^{ik(x \sin \theta + z \cos \theta - vt)} \]

(26)

where, \(\varphi_0, \Theta_0, \Phi_0 \) and \(\psi_0 \) are arbitrary constants and the pair \((\sin \theta, \cos \theta) \) denotes the projection of the wave normal onto the \(\text{ss-plane} \).

Substituting from Eq. (26) into Eqs. (21)-(24), we obtain:

\[k \left(C_T^2 - R_H^2 \right) \psi_0 = (ig \sin \theta - 2i\Omega v) \varphi_0 \]

(27)

\[k^2 \left(C_T^2 + R_H^2 \right) \varphi_0 + \bar{g} \tau^*_1 \Theta_0 + \bar{b} \Phi_0 - ik(g \sin \theta - 2\Omega \psi_0 = 0 \]

(28)

\[i\tau^*_2 \epsilon \psi_0 = (i\tau^*_2 \psi - \omega^* k) \kappa \Theta_0 + i\tau^*_2 \epsilon_1 k \Phi_0 = 0 \]

(29)

\[-bk^2 \varphi_0 + [k^2(\alpha - \rho \chi v^2) + \xi] \Phi_0 - m \Theta_0 = 0 \]

(30)

Eliminating the constants \(\varphi_0, \Theta_0, \Phi_0 \) and \(\psi_0 \) from Eqs. (27)-(30), we obtain:

\[L \Gamma^4 + M \Gamma^3 + N \Gamma^2 + Q \Gamma + R = 0 \]

(31)
where:

\[\Gamma = v^2 \]

\[L = 4\Omega g \sin \theta \tau_2^\ast \left(\frac{\xi}{\omega^3} - \frac{k}{\omega^3} \rho \chi \right) + 4\Omega^2 \frac{\tau_2^2}{\omega^4} (\rho \chi - \xi) \]

\[M = g^2 \sin^2 \theta \tau_2^\ast \left(\frac{\rho \chi}{\omega^2} - \frac{k}{\omega^3} \right) + 4\Omega g \sin \theta \left(\frac{k \alpha (\tau_2^2 + 1)}{\omega^3} - \frac{k \xi \omega^*}{\omega^3} + \frac{m \varepsilon_1 \tau_2}{\omega^3} \right) \]

\[+ \Lambda_1 \beta \tau_1^* \tau_2^* \rho \chi \varepsilon k \omega \left(\xi \omega^* - \omega^2 \alpha \tau_2^* - \rho \chi \omega^* \omega^2 - m \varepsilon \omega_1^2 \tau_2^* \right) \]

\[+ \Lambda_1^2 \tau_2^\ast (\xi + m \varepsilon - \rho \chi \omega^2) \]

\[N = \frac{g^2 \sin^2 \theta}{\omega^4} \left(\omega^* \xi - \alpha \tau_2^* - \frac{m \varepsilon_1 \tau_2}{\omega^2} \right) + \Lambda_1^2 (\rho \chi \omega^* \omega^2 + \alpha \tau_2^* \omega^2 - \omega^* \xi) \]

\[+ \Lambda_2 \tau_2^\ast \Lambda_1 (\rho \chi \omega^2 - \xi - m) - \frac{4}{\omega^3} \Omega \alpha k \omega g \sin \theta + \frac{4}{\omega^2} \frac{\rho \chi \omega^2}{\omega^2} \alpha \]

\[- \Lambda_1 \left(\beta \tau_1^* \tau_2^* (\alpha k + \xi) - \beta \tau_1^* \tau_2^* \varepsilon \right) \]

\[Q = g^2 \sin^2 \theta \omega^* + \Lambda_1 \left(- \beta \omega^* - \Lambda_2 \omega^* \xi - \Lambda_1 \omega^* \omega^2 \right) - C_0^2 m \varepsilon \omega \tau_2^* \]

\[- \beta \tau_1^* \tau_2^* C_0^2 \rho \chi \varepsilon \omega k \omega^2 - \beta \tau_1^* \tau_2^* b C_0^2 \varepsilon \omega^2 \omega^2 - C_0^2 \rho \chi \omega^2 \tau_2^* \Lambda_3 - \beta b C_0^2 \tau_2^* \]

\[R = \Lambda_1 \Lambda_2 (\omega^* \omega^2 - \rho \chi \omega^2 \omega^2 - \tau_2^* \omega^2) - \frac{\omega^*}{\omega^2} \frac{1}{\omega^2} \beta \alpha \tau_1^* \tau_2^* C_0^2 \omega^2 + \Lambda_2 \tau_2^* \]

\[+ b \frac{C_0^2}{\omega^2} \omega^* + C_0^2 \Lambda_3 (\rho \chi \omega^2 \omega^2 - \omega^* \alpha - \omega^* \xi + \alpha \tau_2^* \omega^2 + \omega^2 \tau_2^* + m \varepsilon_1 \omega_1^2 \tau_2^*) \]

where:

\[\bar{b} = \frac{b}{\rho} \]

\[\bar{\beta} = \frac{\beta}{\rho} \]

\[\tau_1^* = \tau_1 - i \omega \]

\[\tau_2^* = \tau_2 + \frac{k}{\omega} \]

\[\tau_2^\ast = \delta \tau_2 + \frac{i}{\omega} \]

\[\Lambda_1 = \left(R_{11}^2 + \frac{\Omega^2}{\omega^2} \right) \]

\[\Lambda_2 = \left(C_0^2 + C_0^2 + R_{11}^2 \right) \]

\[\Lambda_3 = \left(C_0^2 + R_{11}^2 \right) \]

3. Reflection coefficients at free surface

Due to the existing of four waves reflect from incident P wave as shown in Fig. 1, we take into consideration the reflected waves P1, P2, P3 and P4; if the wave normal of the incident wave makes angle \(\theta_0 \) with the positive direction of z-axis, and those of reflected P1, P2, P3 and P4 waves make \(\theta_1, \theta_2, \theta_3 \) and \(\theta_4 \) also with the z-axis, the displacement potentials \(\varphi \) and \(\psi \) the temperature \(\Theta \) and volume of friction \(\Phi \) take the following forms:

\[\varphi = A_0 \exp[i k_0 (x \sin \theta_0 + z \cos \theta_0) - i \omega t] \]

\[+ \sum_{\nu=1}^{4} A_{\nu} \exp[i k_{\nu} (x \sin \theta_{\nu} - z \cos \theta_{\nu}) - i \omega t] \]

\[\psi = \zeta_0 A_0 \exp[i k_0 (x \sin \theta_0 + z \cos \theta_0) - i \omega t] \]
\[+ \sum_{\nu=1}^{4} \zeta_\nu A_\nu \exp[ik_\nu(x\sin\theta_\nu - z\cos\theta_\nu) - i\omega t] \]
(33)

\[\Theta = \xi_0 A_0 \exp[ik_0(x\sin\theta_0 + z\cos\theta_0) - i\omega t] \]
(34)

\[+ \sum_{\nu=1}^{4} \xi_\nu A_\nu \exp[ik_\nu(x\sin\theta_\nu - z\cos\theta_\nu) - i\omega t] \]
(35)

where:

\[\xi_j = \frac{ig\sin\theta - 2i\Omega v_j}{k_j \left(C_j^2 - R_jv_j^2 - \frac{\omega^2}{k_j^2} \right)} \]

\[\eta_j = \frac{v_j^2 k_j^4 \left[\tau_j^2 \epsilon_j \left(k_j^2 (\alpha - \rho\chi)^2 \right) + \xi \right] + 4k_j^2 \epsilon_j^3}{k_j^2 \left(\alpha - \rho\chi v_j^2 \right) + \xi} \]
(36)

\[A_0 \] is the amplitudes of the incident P wave, respectively, and \(A_1, A_2, A_3 \) and \(A_4 \) are the amplitudes of the reflected \(P_1, P_2, P_3 \) and \(P_4 \) waves, respectively.

The boundary conditions at the surface interface take the following form:

\[\sigma_{zz} + \tau_{zz} = -P \quad \sigma_{zx} + \tau_{zx} = 0 \quad \frac{\partial \Theta}{\partial z} = 0 \quad \frac{\partial \Phi}{\partial z} = 0 \]
at \(z = 0 \)
(37)

Figure 1 Geometry of the problem
Abo-Dahab, S. M., Rida, S. Z., Mohamed, R. A. and Kilany, A. A.

For the reflected waves, the wave numbers and the reflected angles may be written as:

\[
\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2} = \frac{\sin \theta_3}{v_3} = \frac{\sin \theta_4}{v_4}.
\]

(38)

Substituting from Eqs. (32)-(35) into the boundary conditions in Eq. (37), we obtain a system of four algebraic equations takes the form:

\[
\sum A_{ij} Z_j = C_i, \quad (i, j = 1, 2, 3, 4)
\]

(39)

where:

\[
A_{1j} = \left[\lambda + \mu (2 \cos^2 \theta_j + \zeta_j \sin 2 \theta_j) + \mu_e H_0^2 + \beta \tau_1^* \frac{\xi_j}{k_j^2} - b \eta_j \frac{\eta_j^2}{k_j^2} \right] \left(\frac{k_j}{k_1} \right)^2
\]

\[
A_{2j} = \left(\frac{P}{2} \zeta_j + \mu [\sin(2 \theta_j) + \zeta_j \cos(2 \theta_j)] \right) \left(\frac{k_j}{k_1} \right)^2
\]

\[
A_{3j} = \cos \theta_j \frac{\xi_j}{k_j^2} \left(\frac{k_j}{k_1} \right)^3
\]

\[
A_{4j} = \cos \theta_j \frac{\eta_j}{k_j^2} \left(\frac{k_j}{k_1} \right)^3
\]

C_i and Z_j take the form:

\[
C_1 = -\left[\lambda + \mu (2 \cos^2 \theta_1 + \zeta_1 \sin 2 \theta_1) + \mu_e H_0^2 + \beta \tau_1^* \frac{\xi_1}{k_1^2} - b \frac{\eta_1}{k_1^2} \right]
\]

\[
C_2 = -\frac{P}{2} \zeta_1 + \mu [\sin(2 \theta_1) - \zeta_1 \cos(2 \theta_1)]
\]

\[
C_3 = A_{31} \quad C_4 = A_{41}
\]

and:

\[
Z_1 = \frac{A_1}{A_0} \quad Z_2 = \frac{A_2}{A_0} \quad Z_3 = \frac{A_3}{A_0} \quad Z_4 = \frac{A_4}{A_0}
\]

4. Numerical results, discussion and concluding remarks

To study the dependence of speeds and reflection coefficients given in Eqs. (31) and (39) on magnetic field, frequency, rotation, relaxation times, and etc., we consider an example where Magnesium Crystal like material is modeled as an isotropic generalized rotating magneto-thermoelastic material with voids for numerical computations. The following elastic and thermal constants at T_0 = 298 K:

\[
\lambda = 2.17 \times 10^{10} \text{N m}^{-2}, \quad \mu = 3.278 \times 10^{10} \text{N m}^{-2}, \quad \sigma = 0.33, \quad \omega = 0.1, \quad C_e = 1.04 \times 10^3 \text{J kg}^{-1} \text{degree}^{-1}, \quad K = 1.7 \times 10^3 \text{W m}^{-1} \text{degree}^{-1}, \quad k = 0.04,
\]

\[
\rho = 1.74 \times 10^3 \text{Kg m}^{-3}, \quad \beta = 2.68 \times 10^6 \text{Nm}^{-2} \text{degree}^{-1}, \quad \alpha_t = 0.01,
\]

and the following void parameters are given in Abo-Dahab [31] as:

\[
\chi = 1.753 \times 10^{-15} \text{m}^2, \quad \alpha = 3.688 \times 10^{-5} \text{N}, \quad \xi = 1.475 \times 10^{10} \text{Nm}^{-2},
\]

\[
b = 1.13849 \times 10^{10} \text{Nm}^{-2}, \quad m = 2 \times 10^6 \text{Nm}^{-2} \text{degree}^{-2}
\]
Rotation, Initial Stress, Gravity and Electromagnetic ...

Figure 2 displays the variations of the waves velocities under rotation with varies values of initial stress, waves velocities decrease with increasing rotation. Figure 3 displays the variations of the waves amplitudes under rotation with varies values of angle of incidence, amplitudes z_1, z_2, z_4 decrease with increasing rotation but amplitudes z_3 increase with increasing rotation. Figure 4 displays the variations of the waves velocities under magnetic field with varies values of initial stress, waves velocities increase with increasing magnetic field.
Figure 4 Variations of the waves velocities under magnetic field with varies values of initial stress

Figure 5 Variations of the waves amplitudes under magnetic field with varies values of angle of incidence

Figure 5 displays the variations of the waves amplitudes under magnetic field with varies values of angle of incidence, amplitudes z_1, z_2, z_4 decrease with increasing magnetic field but amplitudes z_3 increase with increasing magnetic field. Figure 6 displays the variations of the waves amplitudes under initial stress with varies...
values of angle of incidence, the waves amplitudes increase with increasing initial stress.

Figure 6 Variations of the waves amplitudes under initial stress with varies values of angle of incidence

Figure 7 Variations of the waves velocities under gravity with varies values of initial stress

Figure 7 displays the variations of the waves velocities under gravity with varies values of initial stress, the waves velocities v_1, v_4 decrease with increasing gravity but the waves velocities v_2, v_3 increase with increasing gravity.
Figure 8 Variations of the waves amplitudes under gravity with varies values of angle of incidence

Figure 9 Variations of the waves velocities under angle of incidence with varies values of initial stress
Figure 8 displays the variations of the waves amplitudes under gravity with varies values of angle of incidence, the waves amplitudes z_1, z_4 increase with increasing gravity but z_2, z_3 decrease with increasing gravity.

Figure 9 displays the variations of the waves velocities angle of incidence with varies values of initial stress, the waves velocities decrease with increasing angle of incidence.

Figure 10 displays the variations of the waves amplitudes under (CT, LS, GL) models with varies values of angle of incidence, the waves amplitudes z_1 are take the same values (slight change) at different values of three models but the waves amplitudes z_2 and z_3 there are change to three models, the three models take this arrangement CT > LS > GL, the waves amplitudes z_4 displays the effect is more pronounced.

5. Conclusion

The reflected waves velocity with initial stress and amplitude of reflected wave with the angle of incidence are obtained in the framework of dynamical coupling theory, LS theory, GL theory, the effects of applied magnetic field, initial stress, gravity, rotation and thermal relaxation times are discussed numerically and illustrated graphically.

The following conclusions can be made:

1. The initial stress, thermal relaxation times, rotation, and magnetic field play a significant role of reflected wave.
2. The gravity field has a strong effect on the reflected waves velocity and amplitude of reflected wave.

3. The reflected waves velocity and amplitude of reflected wave depend on the angle of incidence and initial stress.

4. Thermal relaxation times are affected strongly on the wave amplitudes z_4 for the incident P wave.

It is observed that the reflected waves velocity and amplitude of reflected wave change their values in the presence of initial stress, thermal relaxation times, rotation, magnetic field and gravity field.

Finally, we recommend applying the research results in diverse fields because of their utilitarian aspects in Engineering, Geophysics, Geology, Earthquakes, Volcanoes, Structures and other fields.

References

Rotation, Initial Stress, Gravity and Electromagnetic ...
Nomenclature
\(\vec{B} \) – is the magnetic induction vector,
\(C_e \) – is the specific heat per unit mass,
\(\vec{E} \) – is the electric intensity vector,
\(e_{ij} \) – are the components of strain tensor,
\(\vec{F} \) – is the Loren’s body forces vector,
\(g \) – is the gravity field,
\(g^* \) – is the intrinsic equilibrated body forces,
\(\vec{h} \) – is the perturbed magnetic field vector,
\(\vec{H} \) – is the magnetic field vector,
\(\vec{J} \) – is the electric current density vector,
\(k \) – is the wave number,
\(K \) – is the thermal conductivity,
\(m \) – is the thermo-void coefficient,
\(P \) is the initial stress,
\(S_i \) – are the components of the equilibrated stress vector,
\(t \) – is the time,
\(T_0 \) – is the natural temperature of the medium,
\(u_i \) – are the components of the displacement vector,
\(\alpha, b, \zeta \) – are the void material parameters,
\(\alpha_t \) – is the coefficient of linear thermal expansion,
\(\beta = \alpha_t(3\lambda + 2\mu) \),
\(\delta_{ij} \) is the Kronecker delta,
\(\varepsilon_0 \) – is the magnetic permeability,
\(\eta \) – is the entropy per unit mass,
\(\mu_e \) – is the magnetic permeability,
\(\rho \) – is the density,
\(\sigma_{ij} \) – are the components of the stress vector,
\(\tau_1, \tau_2 \) – the thermal relaxation times,
\(\tau_{ij} \) – is the Maxwell’s stress tensor,
\(v \) – is the phase speed,
\(\chi \) – is the equilibrated inertia,
\(\omega \) – is the frequency,
\(\Theta = T - T_0, \left| \frac{T - T_0}{T_0} \right| << 1 \),
\(\Phi \) – is the change in volume fraction field,
\(\Omega \) – is the angular velocity.